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Abstract

TCP slow start is designed to begin at a conservative bitrate,
but quickly ramp up to the available bandwidth. Unfortunately,
current default Linux TCP socket buffer sizes impede slow
start bitrates on large bandwidth-delay product (BDP) links.
However, even with our recommended socket buffer sizes in
place, traditional slow start does not work well on large BDP
links such as satellites, often overshooting and causing signif-
icant packet loss. Conversely, TCP HyStart (on by default
in Linux), intended to avoid overshooting during slow start,
can exit from slow start prematurely which is especially detri-
mental to utilization on large BDP links. This paper proposes
adjustments to TCP slow start that find a safe point to enter
congestion avoidance without overshooting, while also avoid-
ing premature exiting that degrades link utilization on large
BDP links. We evaluate the proposed slow start algorithm over
a commercial geostationary satellite link and our preliminary
results indicate that our proposed slow start adjustments im-
prove start-up performance, outperforming the measured alter-
natives.
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Introduction
Satellite networks are a crucial part of modern networks, cov-
ering large areas of the earth without the need for supporting
towers and wires. This allows communication without other
infrastructure, particularly important during emergency res-
cue and when other networks are disrupted. Low Earth Orbit
(LEO) satellite networks use many small satellites that orbit
the Earth at relatively low altitudes, covering 3 and 12 percent
of Earth’s surface at altitudes of 400 and 2000 km, respec-
tively [1]. LEO satellites are sensitive to weather conditions
and have asymmetric bitrates upward and downward, with
delays and capacities at 20-40ms and 100 Mb/s [10]. GEO
satellite networks use a single satellite at a mucher high al-
titude (36,000 km), which correspondingly has much higher
delays of about 600 ms round-trip [5].

The high latency of the satellite network can impact TCP
bitrates and degrade the performance of the network [4, 3].
During slow start, TCP increases the congestion window
(cwnd) by one for each Acknowledgement (ACK) packet it

receives, so the cwnd size approximately doubles for each
round-trip time. Upon packet loss, TCP stops doubling the
cwnd by existing slow start and entering congestion avoid-
ance. TCP buffer sizes can also limit throughputs – TCP
sending rates each round-trip time are limited by the smallest
of the sender buffer size (wmem), receiver buffer size (rmem),
and congestion window (cwnd). When the sender buffer
size or the receiver buffer size is smaller than the conges-
tion window, TCP is unable to fully utilize the network, es-
pecially likely for network links with both a high round-trip
time and high capacity, i.e., slow, fat links such as for satel-
lite networks. Unfortunately, the Linux defaults for sender
and receiver buffer sizes are too small to fully utilize GEO
satellite links. Specifically, to utilized a 150 Mb/s GEO link,
the sender and receiver buffer sizes need to be about 11.25
MBytes, whereas Linux has maximum default buffer sizes of
only 4.2 MBytes.

To overcome buffers that limit throughputs on slow, fat
links, we recommended maximum Linux sender and receiver
buffer sizes to 26 MBytes [11].1 Figure 1 depicts the impact
of this proposed change. The x-axis is the link capacity and
the y-axis is the round-trip time, both shown in logscale. The
dashed line nearest the origin shows the limits of network
utilization for the Linux defaults. In other words, network
connections between this dashed line can be fully utilized
while network connections beyond this cannot. While typi-
cal LEO and 4G links are within this area, GEO and 5G links
are not. The second dashed line depicts the effects of our rec-
ommended buffer sizes, which increases the set of networks
that can be fully utilized to more than encompass GEO and
5G links. For the rest of our paper, we assume Linux settings
with our recommended defaults.

As mentioned earlier, TCP is initially in the slow start
phase and increments the value of cwnd by one each time an
ACK packet is received until it reaches the slow start thresh-
old (ssthresh) or packet loss occurs, whichever comes first.
Since packets lost by overshooting a link’s capacity is detri-
mental to the network, especially for slow, fat links, TCP
should instead exit upon reaching the ssthresh limit. With
this inteny, Hystart [7] was designed to exit TCP slow start
before losing packets due to congestion and is enabled by de-

1Changing the maximum rmem from 6291456 to 26214400 and
wmem from 4194304 to 26214400.



Figure 1: Bandwidth-Delay Product limitations for the de-
fault and recommended maximum Linux buffer sizes.

fault on Linux. However, our earlier work demonstrated that
HyStart over GEO links causes TCP to prematurely exit slow
start, result in underutilization [11].

Our paper investigates the reasons for premature exit of
slow start over satellite networks, both for LEO links and
GEO links. We then propose a new algorithm to exit slow
start at a better point using estimates of the link capacity.
This new algorithm, called Bandwidth Estimate Slow starT
(BEST), uses timing for ACK pairs to estimate the band-
width each round-trip time and sets the ssthresh accord-
ingly. We measure the performance of the BEST algorithm
over actual satellite networks and show improvements over
slow start without HyStart, which overshoots, and slow start
with HyStart which exits slow start too early.

The remainder of this paper is organized as follows: Re-
lated Work summarizes work related to our paper, Methodol-
ogy describes our testbed and proposed BEST algorithm, Re-
sults evaluates our algorithm’s performance, and Conclusion
summarizes our findings and suggests possible future work.

Related Work
This section reviews improvements to TCP slow start and
TCP performance over satellite networks related to our work.

TCP slow start
Guo et al. [6] proposed a stateful-TCP approach where
the path bandwidth is estimated from a previous flow and
recorded in a hash table along with the minimum round-trip
time and destination IP address. Then, this information is
used by the subsequent flow such that the initial cwnd is set
according to the path bandwidth estimated from the previ-
ous flow with pacing applied to outgoing packets in the first
round-trip time to smooth out the initial transmission. They
evaluated the performance of their approach (S-Cubic) ap-
plied to Cubic through emulated and actual Internet exper-
iments. This found the average efficiencies of S-Cubic are

96.3%, 98.8%, and 99.3% for 10 ms, 50 ms, and 100 ms
round-trip times, respectively, with lower queuing delays than
Cubic.

Arghavani et al. [2] introduced the StopEG mechanism to
find the best point for stopping the exponential growth of
cwnd during the slow start phase. This mechanism calculated
that the inflight packet numbers would not exceed 56.8%
when the bottleneck was not saturated. The results of the
ns-3 implementation of StopEG in BBR showed lower delay
and higher throughput than the original BBR.

Zhang et al. [13] introduced an algorithm that improves the
slow start exit time by using ImTCP to measure the available
bandwidth. If there was enough bandwidth, this algorithm
increased cwnd aggressively, but a sudden rise in cwnd could
consume all available capacity and cause congestion for other
traffic.

Our work extends the above by finding the best slow start
exit point, using a bandwidth estimate and the round-trip time
to set the exit point, comparing performance to Hystart on and
Hystart off.

TCP performance over satellite networks
Liu et al. [8] show the impact of using a Performance Enhanc-
ing Proxy (PEP) in a commercial satellite Internet network.
They compared the effect of the PEP for Cubic, BBR, PCC,
and Hybla protocols. The result showed the performance im-
provement for all protocols with a PEP, with the most benefits
for Cubic start-up, a 3x improvement.

Liu et al. [9] introduced a Markov chain model for a TCP
connection with two transition probabilities for cwnd in slow
start and congestion avoidance phases. They use their model
to analyze the performance of TCP New Reno over a satellite.
The results showed throughput improvements, but could not
adapt to satellite networks with a high BDP.

Utsumi et al. [12] proposed two new analytical models for
TCP Hybla in satellite IP networks: a model for steady-state
throughput and a latency model. They evaluated their model’s
accuracy with simulated and emulated satellite links. The re-
sults showed an improvement in the performance, with sig-
nificant improvements in throughput over TCP Reno for loss
rates above 0.0001%.

Our work extends the above by providing performance
analysis over a commercial satellite Internet network.

Methodology
We used two testbeds to evaluate network performance of
TCP slow start - one with a GEO satellite link and another
with a LEO satellite link.

Testbed
GEO Testbed Figure 2 shows the testbed with a GEO satel-
lite link provided via a Viasat modem for our client and our
server, which resides on our campus. The server connects to
the University LAN via Gb/s Ethernet and the campus net-
work itself is connected to the Internet via several 10 Gb/s
links.

The client is a Linux PC with an Intel i7-1065G7 CPU
@ 1.30GHz and 32 GB RAM. The server has an Intel Ken



Figure 2: Geo Satellite Measurement Testbed

E312xx CPU @ 2.5 GHz and 32 GB RAM. The server and
client both run Ubuntu 18.04.4 LTS, Linux kernel version
5.10.79, and Wireshark captures all packet header data on the
server and the client.

The terminal communicates through a Ka-band outdoor an-
tenna (RF amplifier, up/down converter, reflector and feed)
through the Viasat 2 satellite2 to the larger Ka-band gateway
antenna. The terminal supports adaptive coding and modula-
tion using 16-APK, 8 PSK, and QPSK (forward) at 10 to 52
MSym/s and 8PSK, QPSK and BPSK (return) at 0.625 to 20
MSym/s.

The Viasat gateway performs per-client queue manage-
ment, where the queue can grow up to 36 MBytes, allowing a
maximum queuing delay of about 2 seconds at the peak data
rate. Queue lengths are controlled at the gateway by Active
Queue Management (AQM) that randomly drops 25% of in-
coming packets when the queue is over a half of the limit (i.e.,
18 MBytes).

The performance enhancing proxy (PEP) that Viasat de-
ploys by default is disabled for all experiments in order to as-
sess congestion control performance independent of the PEP
implementation and to represent cases where a PEP could not
be used (e.g., for encrypted flows).

The maximum data rate provided is about 150 Mb/s with a
minimum round-trip time of about 600 ms.

LEO Testbed Figure 3 shows the testbed with a LEO satel-
lite, configured similarly to the GEO testbed except that the
client connects via a LEO link provided by Starlink instead of
a GEO link. The LEO link has a peak down-link data rate of
100 Mb/s, but is sensitive to the weather and with a down-link
bitrate greater than the up-link bitrate.

Download During the experiments, the default Linux TCP
congestion control algorithm (Cubic) is used, and the perfor-
mance of the BEST algorithm is compared to both HyStart
on and HyStart off by performing multiple bulk downloads.
For downloads, the servers and client are configured to use
iperf3. The client initiates a connection to one server via iperf
and downloads an object. After the download is complete, the
client pauses for 1 minute, repeating the download 10 times.

2https://en.wikipedia.org/wiki/ViaSat-2

Figure 3: LEO Satellite Measurement Testbed

Figure 4: Time to Download Objects of Different Sizes

HyStart for Satellite Network
As previously mentioned, HyStart exits slow start before
throughput has ramped up to meet the available capacity of
the satellite link, which harms throughput since it then takes
a long time for the TCP congestion windows to grow suffi-
ciently large.

In order to compare the performance of the GEO satellite
with HyStart on and off, the GEO testbed is used to down-
load objects with different sizes 10 times. Figure 4 depicts
the download time for the the first N bytes on the x-axis and
time on the y-axis. From the graph, 1 MB downloads take
50% longer with HyStart enabled. As the size of the object to
download increases up to 50 MBytes, the difference between
the download time for HyStart on and HyStart off increases,
taking up to 2x longer for HyStart on.

To understand why HyStart does not work well for GEO
satellite networks, several 30-second downloads of the same
object were performed. Figure 5 shows the average through-
put and RTT for these tests. As the magnification in the first
part of the RTT graph shows, the RTT goes increases and
then decreases several times. TCP with HyStart considers
this RTT change as a saturation of the link and exits slow
start. But as is evident by the throughput, the link is not sat-
urated despite the early increases in RTT and thus HyStart



Figure 5: RTT and throughput for GEO satellite network with
HyStart on

causes a premature exit from slow start.
We also evaluated HyStart performance for LEO networks

using our testbed to download an object several times within
10 minutes. Figure 6 depicts throughput and RTT graphs for
these experiments. As shown in this figure, the RTT varies
from 20 to 60 ms, and the throughput also fluctuates, some-
times increasing to 350 Mb/s and sometimes dropping to 200
Mb/s independently of the RTT. The lack of correlation in
RTT and throughput illustrates the challenges in exiting slow
start based on RTT alone, as HyStart does.

Figure 7 depicts the slow start exit time for the LEO net-
work downloads with HyStart on and HyStart off. The purple
plus points show the slow start exit times when HyStart is on,
and the green square points show the exit times when HyStart
is off. With HyStart on, TCP exits slow start much earlier,
and the congestion window is capped at small values. With
HyStart off, TCP exits slow start later with larger congestion
windows. Figure 8 shows the corresponding cumulative dis-
tribution function (CDF) of throughout and total retransmis-
sions. From the graph, more packets are lost when HyStart is
off, which suggests slow start is overshooting the ideal con-
gestion window size.

BEST Algorithm
As an alternative to slow start exit points when HyStart is on
(exits too early on slow, fat links) and when HyStart is off
(exits too late for slow, fat links) we propose a new algorithm
based on bandwidth estimation called Bandwidth Estimated
Slow starT (BEST).

Figure 6: RTT and throughput for LEO satellite network with
HyStart on

Figure 7: Congestion window size versus slow start exit time
for LEO satellite network

Figure 8: Cumulative distribution function of throughout and
total retransmissions for LEO satellite network



Figure 9: Illustration of packet temporal spacing through a
bottleneck link

BEST uses a variant of packet-pair bandwidth estimation.
Figure 9 shows two packets of the same size traveling from
source to destination. The wide part of the pipe represents
a high bandwidth link, while the narrow part represents a
low bandwidth link. Packets are sent back-to-back from the
sender, but due to the queue at the bottleneck, a space (a tem-
poral gap) appears between the packets and remains on the
receiver side. Bandwidth is estimated by using the time be-
tween two packets (packet pair time) and packet sizes. Since
we only have access to information on the sender, we use
receiver-sent Ack packets (Ack pairs) to calculate the band-
width.

The pseudocode of the BEST algorithm is shown in Fig-
ure 10, called each time an Ack packet arrives at the sender.
The time when the previous Ack is received subtracted from
the current time to get the Ack pair time (diff time). The
number of bytes acked can be obtained (diff bytes acked)
by subtracting the previous total we know how many bytes
were acked. The bandwidth estimate is then the number of
bytes acked divided by the time (bandwidth estimate =
diff bytes acked÷ diff time).

Using this part of the code, we downloaded an 80 MByte
object multiple times and recorded the estimated bandwidth
for each run over the GEO satellite link. Figure 11 depicts the
estimated bandwidth for one run, where the estimated band-
width is seperated into 5 groups based on RTT round (only
RTT rounds 1 to 5 are shown). Each graph shows the cumula-
tive distribution function of estimated bandwidth in one RTT
round and the dashed vertical line indicates the link capacity
(150 Mb/s). There are only a few samples for the first RTT
(the initial congestion window size is 10), most of which are
low, less than 1 MB/s. This is due to scheduling of the Ack
packets on the returning satellite link. These low values con-
tinue through RTT rounds 2-3. By RTT rounds 4 and 5, the
return link scheduler does regular transmissions so there are
enough samples to estimate the bandwidth. Given the distri-
bution of values – many too low as noted, but many too high
– we filter them by taking the median of the distribution as
the bandwidth estimate for the link.

This estimate coupled with the round-trip time is used to
set the slow start exit threshold (ssthresh).

Figure 10: Pseudocode of BEST algorithm

The bottom half of the algorithm code in Figure 10 shows
the corresponding pseudo code. Each RTT, the estimated
bandwidth values are stored in an array and, when the RTT
ends, the median determined. If the median is greater than 0,
it is used with the RTT to set ssthresh to the BDP. Other-
wise, the array is cleared for the next RTT round.

Result
This section analyzes the performance of TCP using BEST
over a GEO satellite link. We download an 80 MByte ob-
ject 10 times using our testbed and compare the performance
for BEST, the original HyStart (Hystart on), and when HyS-
tart is off. Figure 12 and Table show the download times
(average with 95% confidence interval) and the number of
packet retransmissions, respectively. When HyStart is on,
the number of packet retransmissions is the lowest, but the
premature slow start exit results in a high average download
time (about 30 seconds). By turning off HyStart, the down-
load time is reduced, but with more packet retransmissions
(more than 8000) since slow start overshoots the desired exit
point. BEST has the shortest download times and about half
the packet losses of HyStart.

Table 1: Number of retransmissions

Algorithm Retransmissions
HyStart on 88
HyStart off 9111
BEST 4328



Figure 11: Estimated bandwidth for each RTT (rounds 1 to 5)

Queue occupancy at the bottleneck link is controlled at the
Viasat gateway by Active Queue Management (AQM) which
randomly drops 25% of incoming packets when the queue is
over half of the limit (i.e., 18 MBytes). To assess the effect
of different slow start exit times on the download time of an
object with varying capacity sizes of the queue, we turn HyS-
tart off and download an 80 MB object for full BDP queue
(100% BDP), half BDP queue (50% BDP), and quarter BDP
queue (25% BDP) with the Viasat AQM disabled (i.e., using
only tail drop). Figure 13 shows the results. When TCP exits
slow start too early, the download times are high for all three
queue sizes. The object download time decreases as the slow
start exit times increase to the lowest point near the capacity
(150 Mb/s). However, when TCP exits slow start too late, the
download time rises again especially for small queue sizes.
We repeat the experiment with the BEST algorithm, shown
with the dashed horizontal lines. The BEST results are near
the optimal exit points for different queue sizes.

Conclusion
LEO and GEO satellite networks are an important part of to-
day’s Internet. However, their high latencies and large capac-
ities (slow, fat links) present challenges for TCP flows that
ramp up bitrates in proportion to round-trip times. Default
TCP window settings are too small to fully utilize GEO satel-
lite links and should be increased. Moreover, our experiments

Figure 12: Time to download 80 MB for HyStart on, HyStart
off, and BEST

Figure 13: Performance of BEST for different queue sizes

show that the default TCP HyStart algorithm exits slow start
prematurely, causing unnecessary underutilization. Unfortu-
nately, disabling HyStart causes slow start to exit too late, re-
sulting in unnecessary packet losses. The penalty for exiting
slow start too early and exiting slow start too late is exacer-
bated for small bottleneck queue capacities.

To improve TCP performance over slow, fat links, we
propose a new algorithm that uses bandwidth estimation to
decide on the exit point – Bandwidth Estimate Slow starT
(BEST). BEST estimates bandwidth based on Ack pair times
at the sender and when the median estimate for an RTT round
is above 1 MB/s, the slow start threshold (ssthresh) is set
to the BDP based on this estimate and the RTT.

Our performance results show BEST provides shorter
download times for 80 MByte objects over a GEO satellite
link than HyStart on or HyStart off with more substantial im-
provements for smaller bottleneck queue sizes.

Future work is to evaluate BEST for LEO satellite links as
well as a wide range of wired network conditions. Additional
future work is to consider implementation efficiency in terms
of memory needed to store bandwidth estimates each round,
with heuristics to reduce this if deemed necessary.
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