
Key idea: VeriEQL reduces the equivalence checking

problem into an SMT problem using symbolic reasoning

and utilizes off-the-shelf constraint solvers to determine

the satisfiability of SMT formulas.

Pinhan Zhao1*, Yang He2*, Xinyu Wang1, Yuepeng Wang2

1University of Michigan, USA 2Simon Fraser University, Canada

Demonstration of the VeriEQL Equivalence Checker for Complex SQL Queries

2

Input Analyzer
Semantics Encoder

Γ

Backend DBMSs

Counter-

example

Symbolic

resultsBound 𝑁

𝑅1, 𝑅2

3

Equality Checker
Φ𝒞

Φ𝒞 ∧ Φ𝑅1 ∧ Φ𝑅2

Counterexample Generator

SAT

UNSAT

Equivalent

Non-equivalent

∧ (𝑅1 ≠ 𝑅2)

Queries

𝑄1 𝑄2

Schema

𝐸𝑆

𝐸𝑅

DBMS bug

Z3 Solver

Φ𝑅1 , Φ𝑅2

SQL

𝒮 𝒞

Schema I.C.

S

1

Checker

4

An implementation bug in MySQL v8.0.32.

https://bugs.mysql.com/bug.php?id=110244

VeriEQL can auto-grade queries from LeetCode.

Why is equivalence checking of SQL queries important?

This task has a wide variety of application scenarios.

Rewrite

Validation
Auto-grading Bug Detection

Motivation

Problem Statement
Bounded equivalence verification: Given two SQL

queries under a database schema, VeriEQL aims to verify

whether these two queries always produce identical

results on all possible input databases up to a bounded

size that conform to the schema.

Technique

Equivalence Checking Problem

SMT Problem SMT SolverSymbolic Execution

System Overview

Demonstration Scenarios

Highlights

Expressive query language. VeriEQL supports SPJ,

GROUP BY, aggregate functions, three-valued semantics,

set/bag operations, conditional statements, etc.

Dialects. VeriEQL supports different SQL dialects, i.e.,

MySQL, MariaDB, Oracle, and PostgreSQL.

Genuine counterexample. VeriEQL refutes non-

equivalent SQL queries with concrete database instances

and SMT formulas.

Small-Scope Hypothesis. 96% of non-equivalent

benchmarks are refuted with less than 3 tuples.

Good scalability. VeriEQL can check 70% of the 15,200

benchmarks with bound 5 in 5 minutes.

𝑄1: SELECT id FROM EMP
 WHERE age > 30
𝑄2: SELECT id FROM EMP
 WHERE age >= 30

SQL queries:

VeriEQL can validate optimized SQL queries. VeriEQL can find bugs of DBSMs.

𝑄1

SELECT DISTINCT page_id AS recommended_page
FROM (SELECT CASE WHEN user1_id = 1 THEN user2_id WHEN user2_id =
 1 THEN user1_id ELSE NULL END AS user_id FROM friendship)
 AS tb1 JOIN likes AS tb2 ON tb1.user_id = tb2.user_id
WHERE page_id NOT IN (SELECT page_id FROM likes WHERE user_id = 1)

𝑄2

SELECT DISTINCT page_id AS recommended_page
FROM (SELECT b.user_if, b.page_id FROM friendship a
 LEFT JOIN likes b ON (a.user2_id = b.user_id OR a.user1_id =
 b.user_id) AND (a.user1_id = 1 OR a.user2_id = 1)
 WHERE b.page_id NOT IN (
 SELECT DISTINCT page_id FROM likes WHERE user_id = 1)) T

𝑄1

WITH temp AS (SELECT DISTINCT
 A.customer_id, B.customer_id, B.customer_name
 SUM(CASE WHEN A.product_name IN (‘A’, ‘B’) THEN 1 ELSE 0 END) AS
AB, SUM(CASE WHEN A.product_name = ‘C’ THEN 1 ELSE 0 END) AS C,
 FROM orders A JOIN customers B ON A.customer_id = B.customer_id
 GROUP BY A.customer_id)
SELECT customer_id, customer_name FROM temp WHERE AB >= 2 AND C = 0

𝑄2

SELECT customer_id, customer_name FROM customers
WHERE customer_id IN (
 SELECT DISTINCT customer_id FROM orders WHERE product_name = ‘A’
) AND customer_id IN (
 SELECT DISTINCT customer_id FROM orders WHERE product_name = ‘B’
) AND customer_id NOT IN (
 SELECT DISTINCT customer_id FROM orders WHERE product_name = ‘C’
) ORDER BY customer_id

𝑄1

SELECT DEPTNO, COUNT(*) FILTER (WHERE JOB = ‘CLERK’)
FROM (SELECT * FROM EMP WHERE DEPTNO = 10
 UINON ALL
 SELECT * FROM EMP WHERE DEPTNO > 20) AS t3 GROUP BY DEPTNO

𝑄2

SELECT DEPTNO, COALESCE(SUM(EXPR$1), 0)
FROM (SELECT DEPTNO, COUNT(*) FILTER (WHERE JOB = ‘CLERK’) AS EXPR$1
 FROM EMP WHERE DEPTNO = 10 GROUP BY DEPTNO
 UNION ALL
 SELECT DEPTNO, COUNT(*) FILTER (WHERE JOB = ‘CLERK’) AS EXPR$1
 FROM EMP WHERE DEPTNO > 20 GROUP BY DEPTNO
) AS t12 GROUP BY DEPTNO

user1_id user2_id

0 1

friendship

likes

user_id page_id

-1 0

page_id

NULL

page_id
𝑄2’s expected output

page_id

𝑄2’s real output

order_id customer_id product_name

0 0 B

1 0 B

orders

customers

customer_id product_name

0 Alice

1 Bob

customer_id customer_name

0 Alice

𝑄1’s output

𝑄2’s output

𝑄1’s output

customer_id customer_name

Size 1 2 3 4 5 6 7 8 9

Time (s) 0.2 0.4 0.6 1.0 2.4 6.6 19.7 98.5 118.2

The testPushCountFilterThroughUnion test case of Apache Calcite.

Time to check query equivalence on different input sizes for

validating query optimizations.

Question sourced from

https://leetcode.com/problems/page-recommendations/
Question sourced from

https://leetcode.com/problems/customers-who-bought-

products-a-and-b-but-not-c/

𝑄1: a user-provided answer, 𝑄2: the ground-truth
𝑄1: the optimized query, 𝑄2: the original query

𝑄1: a user-provided answer, 𝑄2: the ground-truth

https://github.com/whatsmyname/VeriEQL-demo

Schema 𝒮:

EMP: {id: int, age: int, …}

Integrity constraints 𝒞:

PK: EMP.id

Symbolic table Γ (𝑁 = 2):

EMP

id age …

𝑡1. id 𝑡1. age …

𝑡2. id 𝑡2. age …

𝑡1

𝑡2

Constraint formula Φ𝒞:

∧ 𝑡1. id ≠ 𝑡2. id ∧ 𝑡1. id ≠ Null ∧ 𝑡2. id ≠ Null

−231 ≤ 𝑡1. id ≤ 231 − 1 ∧ −231 ≤ 𝑡1. age ≤ 231 − 1

∧ −231 ≤ 𝑡2. id ≤ 231 − 1 ∧ −231 ≤ 𝑡2. age ≤ 231 − 1

Φ𝑅1:

where Del is an uninterpreted function.

𝑡1. age > 30 → ¬Del 𝑡1
′ ∧ 𝑡1

′ . id = 𝑡1. id ∧ 𝑡1. age ≤ 30 → Del 𝑡1
′

∧ 𝑡2. age > 30 → ¬Del 𝑡2
′ ∧ 𝑡2

′ . id = 𝑡2. id ∧ 𝑡2. age ≤ 30 → Del 𝑡2
′

Φ𝑅2: 𝑡3. age ≥ 30 → ¬Del 𝑡3
′ ∧ 𝑡3

′ . id = 𝑡1. id ∧ 𝑡3. age < 30 → Del 𝑡3
′

∧ 𝑡4. age ≥ 30 → ¬Del 𝑡4
′ ∧ 𝑡4

′ . id = 𝑡2. id ∧ 𝑡4. age < 30 → Del 𝑡4
′

Symbolic results

𝑅1
id

𝑡1
′ . id

𝑡2
′ . id

𝑡1
′

𝑡2
′

𝑅2

id

𝑡3
′ . id

𝑡4
′ . id

𝑡3
′

𝑡4
′

Input Analyzer

1) Check the syntax of SQL queries 𝑄1, 𝑄2

and schemas 𝒮, 𝒞
2) Check the consistency between SQL

queries 𝑄1, 𝑄2 and schemas 𝒮, 𝒞

Semantics Encoder

1) Build symbolic database Γ over bound 𝑁
2) Encode integrity constraints 𝒞 into Φ𝒞

3) Symbolically execute SQL queries 𝑄1,

𝑄2 into 𝑅1, 𝑅2

Equality Checker

1) Check the satisfiability of

Φ𝒞 ∧ Φ𝑅1 ∧ Φ𝑅2 ∧ (𝑅1 ≠ 𝑅2)

 using Z3

Counterexample Generator

1) Generate executable counterexample (i.e., SQL

codes)

2) Compare symbolic results against execution

results using DBMSs

3) Trigger alerts for manual inspection if potential

DBMS bugs are found

Good scalability

https://bugs.mysql.com/bug.php?id=110244
https://leetcode.com/problems/page-recommendations/
https://leetcode.com/problems/customers-who-bought-products-a-and-b-but-not-c/
https://leetcode.com/problems/customers-who-bought-products-a-and-b-but-not-c/
https://github.com/whatsmyname/VeriEQL-demo

