Pinhan Zhao'*, Yang He%*, Xinyu Wang', Yuepeng Wang?

UNIVERSITY OF
MICHIGAN 1 1 1 1chi 2Q3 : : SIMON FRASER
University of Michigan, USA Simon Fraser University, Canada S - UNIVERSITY
Motivation Technique Highlights
Why 1s equivalence checking of SQL queries important? Key idea: VeriEQL reduces the equivalence checking Expressive query language. VeriEQL supports SPJ,
This task has a wide variety of application scenarios. problem into an SMT problem using symbolic reasoning GROUP BY, aggregate functions, three-valued semantics,

| and utilizes off-the-shelf constraint solvers to determine set/bag operations, conditional statements, etc.
::T@; the satistiability of SMT formulas. Genuine counterexample. VeriEQL refutes non-
ey) equivalent SQL queries with concrete database instances
Rewrite and SMT formulas.
Validation Auto-grading Bug Detection % Equivalence Checking Problem | | | |
Dialects. VeriEQL supports different SQL dialects, 1.¢.,

MySQL, MariaDB, Oracle, and PostgreSQL.
Problem Statement

Bounded equivalence verification: Given two SQL X=Y 00 & Good scalability. VertEQL can check 70% of the 15,200
queries under a database schema, VeriEQL aims to verify <> * benchmarks with bound 5 1n 5 minutes.

whether these two queries always produce 1dentical ' @ SallS Honothosis. 06% of -

results on all possible input databases up to a bounded SMT Problem Symbolic Execution SMT Solver mati-3>cope rypotnests. 76 7o 01 noON-cquivalen

size that conform to the schema benchmarks are refuted with less than 3 tuples.

System Overview

_F ... | | [—

' Equality Checker i

' Semantics Encoder

Counterexample Generator

1) Generate executable counterexample (1.e., SQL

1) Build symbolic database I" over bound N |

12) Encode integrity constraints C into ®¢

and schemas S, C ! Do ADp ADp, A (R # Ry) codes)
2) Check the consistency between SQL '3) Symbolically execute SQL queries Q;, | using Z3 '2) Compare symbolic results against execution
0. into Ry, R, B - e 7 results using DBMSs i
 HUEHES kg, Ko Al seCas o, b e M 2 3) Trigger alers for manual inspection if potential
~ DBMS bugs are found i
Semantics Encoder e s A

Equality Checker Counterexample Generator

—eqpc/\qul/\quz o .
Symbolic
A (R # R;)
3 SAT results

{o} '
Dp., Ppg, Counter-
@ /3 Solver example

Ri, R, !)
J UNSAT AN
Equivalent My J MartabB
Backend DBMSs
Schema S Symbolic table T (N = 2): DPr,t (t;.age > 30 » —Del(t)) At!.id = t4.id) A (t1.age < 30 - Del(ty))
EMP: {id: int, age: 1int, ..} EMP A (ty.age > 30 - —Del(ty) A t).id = t,.id) A (tz.age <30- Del(té))
Integrity constraints C: id | age Dp,: (t3.age = 30 —» —Del(t3) At3.id = t4.id) A (t3. age < 30 - Del(té))
PK: EMP.1d t: |t.id |t.age | .. A (t4.age = 30 > —Del(ty) Aty.id = t,.id) A (t4.age < 30 - Del(t}))
t, |t,.id |t,.age where Del 1s an uninterpreted function.
SQL queries: Symbolic results
, Constraint formula ®: P
(;: SELECT id FROM EMP R4 2
WHERE age > 3@ _231 S tlld S 231 — 1 N\ _231 S tl.age S 231 — 1 id id
Q,: SELECT id FROM EMP A=2° < tp.id < 2°F — 1A =2°" < tp.age < 2°1 — 1 t; |tl.id | t5 |tl.id
WHERE age >= 30 Aty.id # t,.id A ty.id # Null A t,.id # Null ty, |tg.id t, |t,.id
Demonstration Scenarios
VeriEQL can validate optimized SQL queries. Ver1iEQL can auto-grade queries from LeetCode. VeriEQL can find bugs of DBSMs.

WITH temp AS (SELECT DISTINCT
A.customer_id, B.customer_id, B.customer_name
SUM(CASE WHEN A.product name IN (‘A’, ‘B’) THEN 1 ELSE © END) AS

SELECT DISTINCT page_id AS recommended page
FROM (SELECT CASE WHEN userl id = 1 THEN user2_id WHEN user2 id =

SELECT DEPTNO, COUNT(*) FILTER (WHERE JOB = ‘CLERK”) 0, |AB, SUM(CASE WHEN A.product name = C’ THEN 1 ELSE © END) AS C, ¢ 1 THEN userl id ELSE NULL END AS user_id FROM friendship)
FROM (SELECT * FROM EMP WHERE DEPTNO = 10 FROM orders A JOIN custgmers B ON A.customer_id = B.customer_id AS tbl ?OIN likes AS tb2 ON tb}.user_ld.= tb2.user_id .
Q1 UINON ALL GROUP BY A.customer id) - - WHERE page id NOT IN (SELECT page id FROM likes WHERE user_id = 1)
SELECT * FROM EMP WHERE DEPTNO > 20) AS t3 GROUP BY DEPTNO SELECT customer_id, customer name FROM temp WHERE AB >= 2 AND C = © SELECT DISTINCT page_id AS recommended_page
SELECT DEPTNO, COALESCE(SUM(EXPR$1), ©) SELECT customer id, customer name FROM customers FROM (SELECT b.us?r_if, b.page_id FRQM friendshiP a .
FROM (SELECT DEPTNO, COUNT(*) FILTER (WHERE JOB = ‘CLERK’) AS EXPR$1 WHERE customer id IN (- 0, LEFT JOIN likes b ON (a.user2_id = b.user_id OR a.userl_id =
FROM EMP WHERE DEPTNO = 10 GROUP BY DEPTNO SELECT DISTINCT customer id FROM orders WHERE product _name = ‘A’ b.gser_ld) AND (a.userl id =1 OR a.user2_id = 1)
Q2 UNION ALL) AND customer_id IN (- - WHERE b.page_id NOT IN (. . :
SELECT DEPTNO, COUNT(*) FILTER (WHERE JOB = ‘CLERK’) AS EXPR$1 ¢ SELECT DISTIﬁCT customer_id FROM orders WHERE product_name = ‘B’ SELECT DISTINCT page_id FROM likes WHERE user_id = 1)) T
FROM EMP WHERE DEPTNO > 20 GROUP BY DEPTNO) AND customer id NOT IN (.
) AS t12 GROUP BY DEPTNO SELECT DISTINCT customer id FROM orders WHERE product name = °C’ (1: a user-provided answer, Q,: the ground-truth

) ORDER BY customer_id

Q1: the optimized query, Q;: the original query Question sourced from

https://leetcode.com/problems/page-recommendations/

(Q4: a user-provided answer, Q,: the ground-truth

The testPushCountFilterThroughUnion test case of Apache Calcite. Question sourced from

https://leetcode.com/problems/customers-who-bought- friendship -
| b = : : page_1
products-a-and-b-but-not-c/ userl_id | user2_id L
Time to check query equivalence on different input sizes for orders ° ! 0 -
c ot SCPL order_id | customer_id | product_name : : 2’s expected output
validating query optimizations. . — . — : — customer_id | customer_name Likes :> page_1d
. 0 Alice user_id page_id Q,’s output page_id
Size 1 2 3 4 5 6 7 8 9 1 0 B 1 0
Time(s) | 02 04 06 1.0 24 66 197 985 1182 P jl> Q’s output Q,’s real output
Good scalability customer_id | product_name customer_id| customer name An implementation bug in MySQL v8.0.32.
> o 0 Alice , https://bugs.mysql.com/bug.php?1d=110244
R % . Bob Q,’s output

L I

VILDBZ2024 o https://github.com/whatsmyname/VeriEQL-demo

GUANGZHOU

https://bugs.mysql.com/bug.php?id=110244
https://leetcode.com/problems/page-recommendations/
https://leetcode.com/problems/customers-who-bought-products-a-and-b-but-not-c/
https://leetcode.com/problems/customers-who-bought-products-a-and-b-but-not-c/
https://github.com/whatsmyname/VeriEQL-demo

